
Updated Genetic Score Based on 34 Confirmed
Type 2 Diabetes Loci Is Associated With Diabetes
Incidence and Regression to Normoglycemia in the
Diabetes Prevention Program
Marie-France Hivert,

1
Kathleen A. Jablonski,

2
Leigh Perreault,

3
Richa Saxena,

4,5

Jarred B. McAteer,
4,5

Paul W. Franks,
6,7

Richard F. Hamman,
8
Steven E. Kahn,

9
Steven Haffner,

10

the DIAGRAM Consortium,* James B. Meigs,
11,12

David Altshuler,
4,5,12,13,14

William C. Knowler,
15

and Jose C. Florez,
4,5,12,14

for the Diabetes Prevention Program Research Group*

OBJECTIVE—Over 30 loci have been associated with risk of
type 2 diabetes at genome-wide statistical significance. Genetic
risk scores (GRSs) developed from these loci predict diabetes in
the general population. We tested if a GRS based on an updated
list of 34 type 2 diabetes–associated loci predicted progression to
diabetes or regression toward normal glucose regulation (NGR)
in the Diabetes Prevention Program (DPP).

RESEARCH DESIGN AND METHODS—We genotyped 34
type 2 diabetes–associated variants in 2,843 DPP participants at
high risk of type 2 diabetes from five ethnic groups representative
of the U.S. population, who had been randomized to placebo,
metformin, or lifestyle intervention. We built a GRS by weighting
each risk allele by its reported effect size on type 2 diabetes risk
and summing these values. We tested its ability to predict diabe-
tes incidence or regression to NGR in models adjusted for age,
sex, ethnicity, waist circumference, and treatment assignment.

RESULTS—In multivariate-adjusted models, the GRS was sig-
nificantly associated with increased risk of progression to di-
abetes (hazard ratio [HR] = 1.02 per risk allele [95% CI 1.00–1.05];
P = 0.03) and a lower probability of regression to NGR (HR = 0.95
per risk allele [95% CI 0.93–0.98]; P , 0.0001). At baseline,
a higher GRS was associated with a lower insulinogenic index
(P , 0.001), confirming an impairment in b-cell function. We
detected no significant interaction between GRS and treatment,
but the lifestyle intervention was effective in the highest quartile
of GRS (P , 0.0001).

CONCLUSIONS—A high GRS is associated with increased risk
of developing diabetes and lower probability of returning to NGR
in high-risk individuals, but a lifestyle intervention attenuates this
risk. Diabetes 60:1340–1348, 2011

W
idespread collaboration and recent advances
in genetic knowledge and technology have
permitted discovery of many new loci as-
sociated with risk of type 2 diabetes (1,2).

The Diabetes Genetics Replication And Meta-analysis
(DIAGRAM) consortium has carried out genome-wide meta-
analyses of type 2 diabetes as a categorical trait in pop-
ulations of European descent (3,4) and the Meta-Analyses
of Glucose and Insulin-related traits Consortium (MAGIC)
has done likewise for glycemic quantitative traits (5–7).
Both efforts have revealed many genetic variants associated
with type 2 diabetes at genome-wide significance levels
(P , 5 3 1028). The most recent report from DIAGRAM
(including 42,542 type 2 diabetes case subjects and 98,912
control subjects of European descent) has added 12 new
loci (4), producing a total of over 30 single nucleotide
polymorphisms (SNPs) now accepted as associated with
type 2 diabetes.

As fine-mapping and functional studies proceed, this
new genetic knowledge has already revealed unsuspected
biological pathways that help increase our understanding
of pathophysiological mechanisms leading to the disease.
Other investigators have tested the ability of genetic in-
formation to predict who is likely to develop type 2 di-
abetes in prospective general population–based cohorts
(8–10); however similar analyses in a population already at
high risk for type 2 diabetes are lacking.

The Diabetes Prevention Program (DPP) was designed
to test the preventive effects of a lifestyle intervention or
medication on progression to diabetes in high-risk indi-
viduals. We have previously shown that participants who
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carry the risk allele at TCF7L2 (the common type 2 di-
abetes locus with the strongest effect yet reported) are at
increased risk of developing diabetes (11), but most of the
other individual variants examined were not statistically
associated with diabetes incidence (12,13). It is unknown
if a genetic risk score (GRS) using all currently type 2
diabetes–associated loci is associated with progression to
type 2 diabetes in a multiethnic population such as the
DPP cohort, whose participants are already at a very high
baseline risk based on clinical characteristics.

We therefore tested the hypothesis that a higher GRS,
which includes 34 type 2 diabetes–associated loci, would
be associated with a greater risk of developing type 2 di-
abetes in DPP participants after considering treatment
arms (lifestyle intervention and metformin) and other risk
factors for progression toward the disease. Because all
participants had impaired glycemic regulation at baseline,
we conducted similar analyses to test the association be-
tween the GRS and regression to normal glucose regulation
(NGR). Finally, we also tested if the GRS was associated
with physiologic traits (insulin sensitivity and insulin se-
cretion indices), and whether the preventive interventions
maintained their effectiveness in those with the highest
genetic risk.

RESEARCH DESIGN AND METHODS

Description of DPP study design and participants.Details of the DPP study
design and characteristics of the participants at baseline have been described
previously (14,15). In brief, the DPP was a multicenter trial that was designed
to test whether intensive lifestyle modification or pharmacologic intervention
prevents progression to diabetes in individuals at high risk of developing type
2 diabetes. The active intervention phase was conducted from 1996 through
2001 in 27 U.S.-based medical centers.

Participants were included if they had a fasting plasma glucose between 95
and 125 mg/dL (5.3–6.9 mmol/L) and 2-h plasma glucose between 140 and 199
mg/dL (7.8–11.0 mmol/L) on oral glucose tolerance testing (OGTT). A total of
3,234 participants were randomized to intensive lifestyle modification (goal
.7% weight loss and .150 min/week of physical activity), metformin (850-mg
twice daily), or placebo. A fourth troglitazone arm was stopped early because
of the risk of hepatotoxicity. The participants included in this report represent
both sexes (66.8% women) and ethnically diverse backgrounds (56.4% were of
European descent, 20.2% African American, 16.8% Hispanic, 4.3% Asian, and
2.4% American Indian) as planned in the study design. At baseline, mean
(6 SD) age was 50.6 6 10.7 years and mean (6 SD) BMI was 34.0 6 6.7 kg/m2.
The primary end point of the DPP was reduction of diabetes incidence: after
2.8 years of mean follow-up, there was a 58% (95% CI 48–66%) reduction of
diabetes incidence in the lifestyle intervention group and a 31% (95% CI 17–43%)
reduction in the metformin group compared with placebo (16). Institutional
review board approval was obtained by each participating medical center; the
2,843 (947 placebo, 955 lifestyle, and 941 metformin) participants included
in this report provided written informed consent for the main study and for
subsequent genetic investigations.
Definitions of diabetes incidence and regression to NGR. Follow-up of
glycemic regulation was performed with fasting glucose measurement every
6 months and by OGTT every 12 months. Diagnosis of diabetes was made based
on American Diabetes Association (ADA) guidelines (fasting glucose above
$126 mg/dL or 2-h glucose levels $200 mg/dL on an OGTT, confirmed by
a second test within 6 weeks). Regression to NGR was defined as normali-
zation of both fasting and 2-h glucose (fasting glucose ,100 mg/dL and 2-h
glucose ,140 mg/dL).
Quantitative glycemic physiologic traits. We calculated the insulin sensi-
tivity index (ISI) as the reciprocal of homeostasis model assessment of insulin
resistance, determined as 22.5/[(fasting insulin 3 fasting glucose)/18.01] (17).
We estimated insulin secretion by the insulinogenic index using the formula
[(insulin at 30 min) 2 (insulin at 0 min)]/[(glucose at 30 min) 2 (glucose at
0 min)] (18). The oral disposition index was calculated using the formula
[insulinogenic index/fasting insulin] (19). The ISI and insulinogenic index were
also calculated at 1 year to estimate the change in insulin sensitivity or se-
cretion over time: we used the change in each index in subsidiary analyses
([ISI at 1 year – ISI at baseline] and [insulinogenic index at 1 year – insulinogenic
index at baseline]). We chose 1 year because changes in weight were most
pronounced at that time point, and it contained the highest number of measures

for analysis within the DPP population, as individuals who had developed di-
abetes no longer had an OGTT.
SNP selection and genotyping. SNPs associated with type 2 diabetes were
selected based on published reports from the literature (3,5,20–23) as well as
a personal communication from the DIAGRAM+ investigators (4). SNPs as-
sociated with type 2 diabetes at genome-wide statistical significance (P , 5 3
1028) were included. Where the index SNP was not available, a suitable proxy
was selected (r2 .0.8 in HapMap CEU). The mean genotyping success was
96.8%, and the minimum call rate was 92.1%. No SNP had to be excluded for
deviation from Hardy-Weinberg equilibrium (ethnic-specific P , 0.001).

DNA was extracted from peripheral blood leukocytes in a standard fashion.
Genotyping was carried out by allele-specific primer extension of multiplex-
amplified products and detection using matrix-assisted laser desorption ioni-
zation time-of-flight mass spectrometry on a Sequenom iPLEX platform (24).
Construction of GRS. Using previously described methods to construct ge-
netic scores for type 2 diabetes prediction (9,25), we created a weighted GRS
per participant by multiplying the number of risk alleles present per SNP by
the b-estimate reported for that SNP in the MAGIC and DIAGRAM studies and
summing the results over the 34 SNPs (resulting in a possible score ranging
from 0 to 68). We reported the effect of the GRS “per risk allele,” representing
an “average level” per risk allele after weighting. The b-estimates are the
natural log of the odds ratios listed in Table 1. One hundred and fifty-five
individuals missing more than 3 SNPs were excluded from the analysis. The
genotype was imputed for those missing 1–3 SNPs by using the genotype
occurring in the highest frequency within each ethnicity subgroup (n = 313
individuals with imputed genotypes).
Statistical analyses. We assessed baseline characteristics in each quartile of
the weighted GRS: parametric trend tests were constructed using linear con-
trasts for continuous variables, and the Jonckheere-Terpstra trend test was
used for qualitative variables. The GRS was analyzed in general linear models
predicting baseline (and year 1 change from baseline) for ISI (1/homeostasis
model assessment of insulin resistance), the insulinogenic index, proinsulin-to-
insulin ratio, and the oral disposition index. Insulin sensitivity/secretion indices
models were adjusted for age, sex, self-reported ethnicity, and waist circum-
ference (the GRS was more strongly associated with waist circumference than
BMI at baseline). The year 1 analysis included a test for treatment 3 GRS
interaction. Model fit was assessed by residual analysis including quintile-
quintile plots for residual normal distribution.

For diabetes incidence and regression to NGR, we analyzed proportional
hazards models (GRS modeled per risk allele) adjusted for treatment group,
sex, age at randomization, self-reported ethnicity, and waist circumference. We
analyzed treatment 3 GRS interactions by including interaction treatment
terms in models only if significant; if not significant, models included the full
cohort to test the impact of GRS on diabetes incidence and regression to NGR.
To test the stability of our models, we performed sensitivity analyses first by
excluding the top 5% (n = 142) participants with GRS $44 (n = 2,701), then
excluding the bottom 5% (n = 142) participants with GRS #30 (n = 2,701).
Deleting the tails introduced only minor changes in the estimates of the hazard
ratios (HRs), which suggests that the b-estimates are robust and that the
models are stable. Calibration tests of the Cox models were performed using
methods described by Grønnesby and Borgan (26) and Parzen and Lipsitz (27);
there was no evidence of potential problems in the fit of the Cox models. To
assess the additional predicting value of the weighted GRS, we calculated the
C-statistic (28) and the integrated discrimination improvement (29) of the
main multivariable models (adjusted for age, sex, ethnic background, treat-
ment arm, and waist circumference) with and without the GRS.

Furthermore, we analyzed proportional hazards models for association with
diabetes incidence with two sets of covariates. The first set, termed a clinical
model, was intended to ascertain the extent to which the GRS provided in-
formation not contained in easily obtained clinical measurements: it included
the covariates treatment group, sex, age at randomization, self-reported eth-
nicity, family history of diabetes, BMI, fasting plasma glucose, history of hy-
pertension, HDL cholesterol, and log triglycerides (similar to a previous model
used in the general population [9,30]). The second set of covariates repre-
sented a physiological model, designed to examine the functional mechanisms
that have generally been hypothesized in pathways leading to diabetes: in
addition to treatment group, sex, age at randomization, it included the cova-
riates waist circumference, fasting plasma glucose, 2-h plasma glucose, log
insulinogenic index, log fasting insulin, log alanine aminotransferase (a sur-
rogate for hepatic fat), and log C-reactive protein (a surrogate for inflamma-
tion). We assessed collinearity by analyzing correlations, variance-inflation
factors, and the condition index; there was no evidence that collinearity was
a problem in these data. The weighted GRS was added to each model and
assessed for predicting diabetes. Madalla R-square (31) was used to describe
the amount of variation explained by each variable in the models. To obtain
adjusted incidence rates, we used a Poisson model through a general esti-
mating equation. Rates were adjusted for age, sex, self-reported ethnicity, and
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waist circumference, and linear contrasts were used to test incidence rates
between treatment groups in the 4th quartile of GRS. The Holm procedure was
used to correct for multiple comparisons.

As exploratory analyses, each individual locus was tested for associations
with progression to diabetes and regression to NGR taking into account
treatment arms: interactions were tested and results are presented adjusted for
treatment arms (if interaction tests were nonsignificant) and in each treatment
arm. Finally, we performed main analyses in each ethnic subgroup to assess
how the GRS (based on loci found in populations of European descent) per-
formed in groups other than white; nevertheless, we are aware that sample size
is limiting and consider these subgroup analyses as exploratory.

RESULTS

The type 2 diabetes–associated SNPs genotyped in DPP
participants and the frequencies of the risk alleles in the
overall group are presented in Table 1; frequencies for
each ethnic group are presented in Supplementary Table 1.
Table 1 also shows the reported odds ratios we used when
constructing the weighted GRS based on reported effects
in recent type 2 diabetes meta-analyses (3–5,20–23).

After imputation, the median-weighted GRS score was
37.0 (ranging from 23.7 to 51.5). The baseline character-
istics of participants in each quartile of the weighted GRS

are presented in Table 2. There was a higher proportion of
individuals from European descent than of other eth-
nicities in the lowest risk quartile. As hypothesized, more
participants in the highest GRS quartile reported a family
history of type 2 diabetes. Also as hypothesized, a higher
GRS was associated with indices of diminished b-cell
function (as determined by the insulinogenic index, r =
20.04; P = 0.04) and of impaired insulin processing (pro-
insulin-to-insulin ratio, r = 0.06; P = 0.003). On the other
hand, participants in the highest GRS quartile showed a
better metabolic profile mainly in terms of central obesity
(lower waist circumference) and insulin resistance-related
traits (lower fasting insulin and triglycerides, higher HDL
levels) or estimated insulin sensitivity (ISI, r = 0.05; P =
0.009).

Adjustment for age, sex, ethnic background, and waist
circumference strengthened the association of higher GRS
with lower insulin secretion (insulinogenic index b =20.004
[SE 0.001], P , 0.001) and impaired insulin processing
(proinsulin-to-insulin ratio b = 0.008 [SE 0.002], P = 0.001)
(Table 3). The apparently paradoxical association between
a high GRS and insulin sensitivity was attenuated but

TABLE 1
Type 2 diabetes risk loci genotyped in DPP participants

Genetic locus
SNP
typed

Alleles
(risk/other) Strand OR* Study

Overall study (all ethnic groups)

A = risk allele/a = other allele

AA Aa aa

N (%) N (%) N (%)

TCF7L2 rs7903146 T/C + 1.37 DIAGRAM 287 (9.6) 1,227 (41.1) 1,469 (49.3)
CDKN2A/2B rs10811661 T/C + 1.26 DIAGRAM 2,245 (75.3) 664 (22.3) 71 (2.4)
CDKAL1 rs7754840 C/G + 1.25 DIAGRAM 453 (15.2) 1,348 (45.2) 1,180 (39.6)
PPARG rs1801282 C/G + 1.18 DIAGRAM 2,501 (83.6) 476 (15.9) 16 (0.5)
HHEX rs1111875 C/T – 1.17 DIAGRAM 1,218 (40.8) 1,337 (44.8) 432 (14.5)
IGF2BP2 rs1470579 C/A + 1.17 DIAGRAM 598 (20.2) 1,185 (40.1) 1,175 (39.7)
KCNJ11 rs5219 T/C + 1.16 DIAGRAM 318 (10.6) 1,242 (41.6) 1,426 (47.8)
SLC30A8 rs13266634 C/T + 1.15 DIAGRAM 1,723 (57.7) 1,072 (35.9) 191 (6.4)
THADA rs7578597 A/G – 1.15 DIAGRAM 2,259 (77.7) 587 (20.2) 63 (2.2)
CENTD2 rs1552224 A/C – 1.14 DIAGRAM+ 2,363 (81.9) 494 (17.1) 29 (1.0)
NOTCH2 rs10923931 T/G + 1.13 DIAGRAM 95 (3.3) 697 (24.0) 2,118 (72.8)
ADCY5 rs11708067 A/G + 1.12 MAGIC 1,891 (65.7) 863 (30.0) 125 (4.3)
WFS1 rs10010131 G/A + 1.11 DIAGRAM 1,315 (44.0) 1,302 (43.6) 371 (12.4)
CDC123 rs4747969 C/T + 1.11 DIAGRAM 136 (4.7) 959 (33.0) 1,814 (62.4)
IRS1 rs7578326 A/G + 1.11 DIAGRAM+ 1,299 (47.1) 1,119 (40.6) 340 (12.3)
CHCHD9 rs13292136 C/T + 1.11 DIAGRAM+ 2,431 (85.5) 389 (13.7) 25 (0.9)
JAZF1 rs864745 G/A + 1.10 DIAGRAM 493 (17.0) 1,348 (46.5) 1,059 (36.5)
HNF1B rs757210 T/C – 1.10 DIAGRAM 517 (17.9) 1,318 (45.7) 1,049 (36.4)
HMGA2 rs1531343 C/G + 1.10 DIAGRAM+ 114 (4.1) 692 (24.8) 1,987 (71.1)
ADAMTS9 rs4607103 C/T + 1.09 DIAGRAM 1,478 (50.8) 1,201 (41.3) 230 (7.9)
TSPAN8 rs7961581 C/T + 1.09 DIAGRAM 217 (7.5) 1,089 (37.4) 1,603 (55.1)
MTNR1B rs10830963 G/C + 1.09 MAGIC 200 (6.9) 998 (34.5) 1,692 (58.6)
BCL11A rs243021 A/G – 1.08 DIAGRAM+ 704 (24.4) 1,392 (48.3) 787 (27.3)
SLC22A18AS rs231362 G/A – 1.08 DIAGRAM+ 1,150 (40.3) 1,274 (44.7) 427 (15.0)
ZBED3 rs4457053 G/A + 1.08 DIAGRAM+ 251 (8.8) 1,148 (40.3) 1,447 (50.8)
PROX1 rs340874 C/T – 1.07 MAGIC 630 (22.1) 1,305 (45.7) 921 (32.3)
GCK rs917793 T/A – 1.07 MAGIC 168 (5.8) 1,015 (35.1) 1,707 (59.1)
TSGA13 rs972283 G/A + 1.07 DIAGRAM+ 1,099 (38.8) 1,274 (45.0) 460 (16.2)
VPS33B rs8042680 A/C + 1.07 DIAGRAM+ 978 (34.4) 1,086 (38.2) 783 (27.5)
HNF1A rs7957197 T/A + 1.07 DIAGRAM+ 2,009 (70.3) 756 (26.5) 92 (3.2)
DGKB rs2191349 T/G + 1.06 MAGIC 870 (30.1) 1,401 (48.5) 618 (21.4)
GCKR rs780094 C/T – 1.06 MAGIC 1,258 (43.5) 1,281 (44.3) 351 (12.2)
PLEKHF2 rs896854 T/C – 1.06 DIAGRAM+ 826 (29.0) 1,379 (48.4) 644 (22.6)
BCL2A1 rs11634397 G/A + 1.06 DIAGRAM+ 988 (34.3) 1,348 (46.7) 548 (19.0)

OR, odds ratio. *OR reported by previous literature (column study).
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remained nominally statistically significant after multivar-
iable adjustment (ISI b = 0.006 [SE 0.002], P = 0.02). The
oral disposition index tended to be lower in individuals
with a higher GRS (b =20.004 [SE 0.002]; P = 0.06), driven
by the significantly lower insulin secretion but attenuated
by slightly better insulin sensitivity after adjustment for
potential confounders.

Over the first year, a higher GRS tended to be associated
with worsening of insulin secretion, but this was not sig-
nificant (change in insulinogenic index b = 20.008 [SE
0.005], P = 0.13 after adjustment for age, sex, ethnic
background, waist circumference, and treatment arms).
Having a high GRS did not seem to influence the 1-year
change in other insulin sensitivity/secretion indices.
Progression to diabetes. We did not find significant
interactions between treatment arms and the weighted
GRS (GRS3metformin interaction, P = 0.67; GRS3 lifestyle

interaction, P = 0.13); therefore, we pursued our multi-
variable models in the full cohort adjusting for treatment
arms. The GRS tended to be associated with higher risk of
progression to diabetes when adjusting for treatment arms
(HR = 1.02 per risk allele [95% CI 1.00–1.04]; P = 0.08)
(Table 4). When further adjusting for major risk factors for
type 2 diabetes (age, sex, ethnic background, and waist
circumference), the weighted GRS was nominally associ-
ated with higher risk of type 2 diabetes over the average
3.2-year follow-up (HR = 1.02 per risk allele [95% CI 1.00–
1.05]; P = 0.03). Adding BMI to the model did not influence
the associations, and the weighted GRS remained nomi-
nally associated with progression to diabetes (HR = 1.02;
P = 0.03). Figure 1 illustrates the incidence rate of diabetes
(case subjects/100 person-years) by quartile of GRS per
treatment arm. The C-statistic value for the main multi-
variable model was 0.628 without the weighted GRS and

TABLE 2
Baseline characteristics of DPP participants in each quartile of GRS

Quartile of weighted GRS

Baseline characteristic 1st 2nd 3rd 4th P*

Weighted genetic score 32 (24–34)
N = 710

36 (34–37)
N = 711

38 (37–40)
N = 711

42 (40–51)
N = 711

Female sex (%) 460 (64.8) 484 (68.1) 486 (68.4) 482 (67.8) 0.049
Self-reported ethnicity
White (%) 481 (67.7) 444 (62.4) 375 (52.7) 295 (41.5) ,0.001
African American (%) 41 (5.8) 77 (10.8) 166 (23.3) 295 (41.5)
Hispanic (%) 121 (17.0) 121 (17.0) 130 (18.3) 94 (13.2)
Asian/Pacific Islander (%) 41 (5.8) 47 (6.6) 19 (2.7) 16 (2.3)
American Indian (%) 26 (3.7) 22 (3.1) 21 (3.0) 11 (1.5)

Self-reported family history of DM (%) 477 (67.4) 483 (67.9) 491 (69.1) 529 (74.4) ,0.001
Age (years) 50 (28–85) 50 (26–84) 50 (25–84) 49 (26–83) ,0.001
BMI (kg/m2) 33 (23–66) 33 (23–58) 33 (23–65) 32 (22–71) 0.06
Waist (cm) 105 (69–182) 104 (70–190) 104 (73–159) 102 (74–155) ,0.001
Fasting plasma glucose (mg/dL) 105 (89–136) 105 (85–139) 106 (82–139) 106 (90–138) ,0.001
2-h plasma glucose (mg/dL) 162 (140–199) 165 (140–199) 162 (140–199) 162 (140–199) 0.38
Hypertension (%) 165 (23.2) 161 (22.6) 167 (23.5) 154 (21.7) 0.90
HDL (mg/dL) 43 (21–91) 43 (22–105) 44 (20–103) 45 (19–101) 0.002
Fasting triglycerides (mg/dL) 152 (37–823) 151 (30–695) 136 (39–835) 125 (36–920) ,0.001
ALT 18 (3–106) 17 (1–112) 17 (2–114) 17 (1–114) ,0.001
CRP (mg/L) 0.38 (0.01–12.60) 0.38 (0.01–7.36) 0.38 (0.01–11.80) 0.36 (0.01–11.11) 0.83

Data are n (%) or median (minimum to maximum) unless otherwise indicated. ALT, alanine transaminase; CRP, C-reactive protein; DM,
diabetes. *P value for F tests from general linear models.

TABLE 3
Associations between GRS and insulin secretion or insulin sensitivity indices adjusted for age, sex, ethnic background, and waist
circumference in DPP participants

Quartile of weighted GRS

b* (SE) P1st 2nd 3rd 4th

N 710 711 711 711
Weighted genetic
score 32 (24–34) 36 (34–37) 38 (37–40) 42 (40–51)

Insulinogenic index 1.24 (1.17–1.32) 1.25 (1.18–1.33) 1.25 (1.17–1.32) 1.12 (1.05–1.20) 20.004 (0.001) ,0.001
ISI (= 1/HOMA-IR) 0.157 (0.150–0.164) 0.157 (0.150–0.164) 0.159 (0.152–0.166) 0.161 (0.154–0.169) 0.006 (0.002) 0.02
Proinsulin-to-
insulin ratio 0.178 (0.170–0.186) 0.181 (0.173–0.189) 0.184 (0.176–0.192) 0.191 (0.182–0.200) 0.008 (0.002) 0.001

Disposition
index (oral) 0.048 (0.046–0.051) 0.050 (0.047–0.053) 0.050 (0.047–0.053) 0.046 (0.043–0.049) 20.004 (0.002) 0.06

Data are least squares mean (95% CI) unless otherwise indicated. P values for b in the regression model. HOMA-IR, homeostasis model
assessment of insulin resistance. *Regression model, per unit increase in GRS.
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0.631 when adding the weighted GRS; this improvement
was not statistically significant (P = 0.34). The integrated
discrimination improvement (IDI) measure for the GRS
was also not statistically significant (IDI = 20.001; P =
0.38) in the multivariable model taking diabetes incidence
as the main outcome. When examining individuals at the
highest genetic risk of type 2 diabetes (4th quartile of
GRS), there was no statistical difference in diabetes in-
cidence between the placebo and metformin arms (P =
0.32); however, diabetes incidence was significantly higher
in the placebo arm than in the lifestyle intervention (P ,
0.0001) (Fig. 1).

We conducted sensitivity analyses in the largest ethnic
group within the DPP (1,595 participants of European
descent) to reduce the likelihood that population stratifi-
cation was influencing our results. This subgroup is es-
sentially free of non-European ethnic admixture (32). In
the DPP, diabetes incidence did not differ by self-reported
ethnicity, further minimizing concerns for such an effect
(16). As hypothesized, a higher GRS was associated with
an increased risk of progression to diabetes in white DPP
participants (HR = 1.03 per risk allele [95% CI 1.00–1.06];
P = 0.04 in multivariable model including treatment, age,
sex, and waist circumference). We performed the same
multivariable models in each ethnic subgroup, but the results
should be interpreted with caution because of the small
numbers in those subgroups (Supplementary Table 2).

We derived two separate prediction models composed
of nongenetic variables. The clinical prediction model
contained variables deemed to be easily available in rou-
tine clinical care and was used to estimate the extent to
which the available genetic information contributes to
existing prediction tools. The physiological prediction
model contains variables derived through metabolic
investigations and was used to examine which area of di-
abetes physiology was best captured by the genetic data.
The HRs for the weighted GRS and each variable included
in the models are presented in Supplementary Table 3. The
effect of the weighted GRS remained in the same direction
but was not significantly associated with progression to
diabetes when added to clinical or physiological models
(HR = 1.01 per risk allele [0.99–1.03], P = 0.35 and HR =
1.01 per risk allele [0.99–1.04], P = 0.29, respectively). Using
Madalla R2 to assess the amount of variation explained by
each variable, glucose concentrations explained the largest
R2 in both models (R2 = 8.58% for fasting glucose in the
clinical model; R2 = 5.87% for fasting glucose; and R2 =
2.78% for 2-h glucose in the physiological model). Once
glucose variables were excluded from the models, the
weighted GRS was nominally associated with diabetes
incidence (P = 0.04 in the clinical model; P = 0.02 in the
physiological model).

We explored associations between each locus and pro-
gression to diabetes (Supplementary Table 4). Risk alleles

TABLE 4
Multivariable models to predict progression to diabetes in DPP participants

Minimally adjusted for treatment arms Multiadjusted model

Variables HR (95% CI) P HR (95% CI) P

Weighted GRS (per risk allele) 1.02 (1.00–1.04) 0.08 1.02 (1.00–1.05) 0.03
Metformin (vs. placebo) 0.71 (0.59–0.86) 0.0005 0.70 (0.58–0.85) 0.0003
Lifestyle (vs. placebo) 0.46 (0.37–0.57) ,0.0001 0.45 (0.36–0.56) ,0.0001
Female (vs. male) 0.99 (0.83–1.19) 0.94
African American (vs. white) 1.03 (0.82–1.29) 0.81
Hispanic (vs. white) 1.12 (0.88–1.42) 0.37
Asian/Pacific Islander (vs. white) 1.56 (1.04–2.33) 0.03
American Indian (vs. white) 0.90 (0.53–1.54) 0.70
Age at randomization (per year) 1.00 (1.00–1.01) 0.45
Waist circumference (per cm) 1.02 (1.02–1.03) ,0.0001

FIG. 1. Diabetes incidence rate (case subjects/100 person-year) in each GRS quartile per treatment arm adjusted for age, sex, ethnic background,
and waist circumference. Although the GRS was associated with diabetes incidence in the full cohort, not all P values reached nominal statistical
significance in the stratified treatment arms (PBO, P = 0.152; MET, P = 0.039; ILS, P = 0.877). In the 4th quartile of GRS: PBO vs. MET, P = 0.315;
PBO vs. ILS, P < 0.0001. PBO, placebo group; MET, metformin treatment arm; ILS, intensive lifestyle treatment arm.
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located in or near HNF1A, PLEKHF2, and KCNJ11
showed nominally significant interactions with treatment
arms to predict progression to diabetes.
Regression to NGR. At baseline, all participants had im-
paired glucose tolerance (IGT) and elevated fasting glu-
cose. A higher weighted GRS was strongly associated with
a lower probability of regression toward NGR over the 3.2-
year follow-up (HR = 0.95 per risk allele [0.93–0.98]; P ,
0.0001) in the multivariable adjusted model (Table 5).
Older age and larger waist circumference were also asso-
ciated with a lower probability of regression to normogly-
cemia. Once again we did not detect significant interactions
between the GRS and treatment arms (weighted GRS 3
metformin interaction, P = 0.98; weighted GRS 3 lifestyle
interaction, P = 0.85). The incidence rate of regression to
NGR (case subjects/100 person-years) in each quartile of
GRS per treatment arm is illustrated in Fig. 2. The C-statistic
value for prediction of regression to NGR was 0.646 for the
multivariable model (adjusted for age, sex, waist, ethnic
background, treatment arm); the C-statistic value increased
to 0.658 when adding the weighted GRS in the model (P =
0.03). The IDI was nevertheless nonsignificant (IDI =
20.007; P = 0.10). When examining individuals at the highest
genetic risk of type 2 diabetes (4th quartile of GRS), there
was no statistical difference in regression to NGR between
the placebo and metformin arms (P = 0.062); however, re-
gression to NGR was significantly higher in the lifestyle in-
tervention arm than in the placebo arm (P, 0.0001) (Fig. 2).

Results of multivariable models in each ethnic subgroup
are presented in Supplementary Table 2 and should be
interpreted with caution because of the small numbers in
some subgroups. In exploratory analyses testing associa-
tions between each single locus and regression to NGR, we
observed significant interactions of treatment arms with
SNPs located in or near PLEKHF2, MTNR1B, HHEX, and
KCNJ11 (Supplementary Table 5).

DISCUSSION

We have shown that a weighted GRS based on 34 type 2
diabetes loci is associated with an increased risk of pro-
gression toward diabetes and a lower probability of
regressing toward NGR over 3.2 years of follow-up in DPP
participants, a population at high risk for type 2 diabetes.
The association between the GRS and diabetes incidence
was best revealed once we adjusted for major type 2 di-
abetes risk factors such as age, sex, ethnic background,
and waist circumference. The effect size per risk allele
was lower than that observed in the progression from

normoglycemia to type 2 diabetes (8–10), reflecting the
greater metabolic similarity at enrollment between DPP
participants who went on to develop diabetes and those
who did not. The GRS was also associated with lower
insulinogenic index and higher proinsulin-to-insulin ratio
at baseline, illustrating that most of the type 2 diabetes loci
identified so far (and thus included in the weighted GRS)
are related to b-cell function. The lifestyle intervention
was effective in those with the highest genetic risk.

We observed an association between a higher GRS and
greater estimated insulin sensitivity at baseline, which
some might find paradoxical. It is likely that this para-
doxical association is because of the narrow ascertain-
ment criteria of the DPP at enrollment: to be included in
the DPP at baseline, participants had to be glucose in-
tolerant but not have type 2 diabetes. Therefore, those
whose b-cell function was most impaired by their genetic
burden should have had better insulin sensitivity to remain
free of diabetes and fit into the DPP inclusion criteria.
Along the same lines, we also observed an association
between higher GRS and a better metabolic profile in-
dicative of insulin sensitivity, in particular smaller waist
circumference. Once again, this is likely because of the
narrow DPP inclusion criteria where participants with
decreased insulin secretory capacity at baseline had to
have lower metabolic risk based on abdominal adiposity
and its correlates (waist circumference, triglycerides, and
HDL levels) to compensate for this deficiency and be in-
cluded in the study. These observations further support
our original conclusion that the observed association of
the TCF7L2 diabetes risk genotype with a lower waist
circumference was because of ascertainment artifact (11).
Given that in the DPP a higher GRS is associated with
a better metabolic profile and a different ethnic distribu-
tion at baseline, it was essential to adjust for those po-
tential confounders in our investigations of diabetes
incidence and regression to NGR. Indeed, the association
between the GRS and diabetes incidence was strongest
when adjusting for those important risk factors.

We also explored the association between genetic risk
and diabetes incidence by constructing multivariable
models using variables that are easily measured clinically
or reflect diabetes pathophysiology. Covariates included in
the clinical model were based on previous clinical models
in a general population cohort (30). The GRS was not an
independent predictor of diabetes in the clinical model,
again showing that common known risk factors easily
measurable in practice capture most of the predictive in-
formation. Moreover, the improvement in C-statistics and
the IDI value after adding the GRS to our main multivari-
able model were not significant. This is in accordance with
previous reports from general population cohorts showing
that even if a GRS is associated with diabetes incidence, it
adds little to the common known clinical risk factors (8,9).
In both clinical and physiological models, once we re-
moved glucose levels from the models, the GRS was sig-
nificantly associated with diabetes incidence, suggesting
that the association between genetic variants and diabetes
risk is mainly explained through the influence of risk
alleles on glucose levels. As shown previously, a GRS may
perform better in younger populations or in cohorts with
longer follow-up than was attained here; in both instances,
genetic markers gain predictive ability in comparison with
clinical characteristics (8–10).

With regard to preventive strategies, treatment with
metformin or an intensive lifestyle intervention is effective

TABLE 5
Multivariable models to predict regression to NGR in DPP
participants

Variables HR (95% CI) P

Weighted GRS (per risk allele) 0.95 (0.93–0.98) ,0.0001
Metformin (vs. placebo) 1.26 (0.98–1.62) 0.08
Lifestyle (vs. placebo) 2.38 (1.89–2.99) ,0.0001
Female (vs. male) 0.81 (0.66–0.99) 0.04
African American (vs. white) 1.22 (0.95–1.58) 0.12
Hispanic (vs. white) 0.96 (0.74–1.24) 0.76
Asian/Pacific Islander (vs. white) 0.52 (0.31–0.84) 0.009
American Indian (vs. white) 1.16 (0.63–2.14) 0.64
Age at randomization (per year) 0.98 (0.97–0.99) ,0.0001
Waist circumference (per cm) 0.98 (0.98–0.99) ,0.0001
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at reducing the risk of diabetes incidence at any level of
genetic risk. In fact, the data point toward the possibility
that lifestyle could be even more effective in individuals
with the highest GRS (Fig. 1). Nevertheless, the test for
GRS by treatment interaction was not significant, and
therefore we have no conclusive evidence that any treat-
ment works better in a genetically defined category. In
either case, genetic burden does not seem to undermine
the DPP lifestyle intervention.

Perhaps as important as predicting progression to di-
abetes was the ability of the weighted GRS to predict re-
gression to NGR. Clearly, the most desirable outcome is to
return to a state of normal glucose homeostasis rather
than remain in a high-risk state, such as IGT. We have
previously reported both modifiable (lifestyle changes)
and nonmodifiable (increasing age) factors that impact
one’s ability to return to NGR (33). Most striking was the
observation that diminished insulin secretion, not insulin
sensitivity, impeded DPP participants from attaining NGR
(33). In line with our previous report, we observed here
that a higher GRS reflecting mostly impaired insulin se-
cretory capacity at baseline was strongly associated with
a lower chance to regress to NGR. This suggests that
individuals with a high genetic risk of developing diabetes
would need attention before they develop IGT if pre-
ventive interventions are to help them remain normogly-
cemic. On a positive note, we observed that even in
individuals at high genetic risk, intensive lifestyle in-
tervention was associated with a higher incidence of re-
gression to NGR compared with metformin or placebo
groups (Fig. 2).
Strengths and limitations. The strengths of our study
include that DPP is a randomized controlled trial with
standardized glucose tolerance testing at regular intervals.
SNP selection was based on the most recent findings
from large meta-analyses (DIAGRAM+ and MAGIC), and
genotyping was performed with high-quality control stan-
dards. However, our study also has limitations. All partic-
ipants were classified as having IGT at baseline to be
included in the study and could have regressed sponta-
neously to NGR; nevertheless, the rate of this spontaneous
regression should not be different by treatment arm allo-
cation. Imputation of missing genotypes slightly reduces

the variance of the GRS, and thus results of multivariate
models should be viewed with this in mind. The GRS was
based on loci that were identified in populations of Euro-
pean descent (with the exception of KCNQ1); we tested
our hypothesis in the overall DPP population (including
participants of diverse ethnic backgrounds), which could
raise the issue of population stratification. We addressed
that issue by testing our hypothesis in the subgroup com-
posed of white participants and found essentially the same
level of association. Our analyses demonstrated that a GRS
adds little to currently used phenotypic risk factors, and
so clinical practice should continue to focus on well-
established and easily measureable diabetes risk factors
such as age, central adiposity, and glycemic levels (and/or
other components of the metabolic syndrome). Analyses
testing associations between each locus and progression
to diabetes or regression to NGR were exploratory and
should be interpreted with caution because P values were
not corrected for multiple testing. Observations in each
treatment arm also need to be interpreted with caution
because we did not find a significant interaction between
the GRS and treatment arms; in addition, the study might
be underpowered to detect interactions by treatment.
However, it is interesting to observe that DPP participants
benefited from lifestyle intervention and showed lower
progression to diabetes and a higher probability of re-
gression to NGR, even in the highest quartile of GRS.
Conclusions. In summary, we demonstrated that a higher
type 2 diabetes genetic risk estimated with a score built
from 34 known type 2 diabetes loci is associated with a
greater likelihood of progressing toward diabetes and a
lower likelihood of regressing to NGR in DPP participants.
Currently, most of the loci identified as increasing the risk
of type 2 diabetes are implicated in b-cell function. It is
therefore not surprising that our GRS was associated with
lower insulin secretion and impaired insulin processing
at baseline. From a public health perspective, the knowl-
edge that individuals with IGT who also have a high GRS
have a greater impairment of b-cell function and a lower
chance of regression toward NGR, suggesting that they
may deserve medical attention before they reach this im-
paired status. Whether they would benefit from an earlier
preventive intervention strategy remains to be tested.

FIG. 2. Regression rate (case subjects/100 person-year) to NGR in each GRS quartile per treatment arm adjusted for age, sex, ethnic background,
and waist circumference. Although the GRS was associated with regression to NGR in the full cohort, not all P values reached nominal statistical
significance in the stratified treatment arms (PBO, P = 0.123; MET, P = 0.001; ILS, P = 0.027). In the 4th quartile of GRS: PBO vs. MET, P = 0.062;
PBO vs. ILS, P < 0.0001. PBO, placebo group; MET, metformin treatment arm; ILS, intensive lifestyle treatment arm.
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